SURFACE AREA AND VOLUVIE OF

 SOLIDS
Geometry
 Chapter 12

- This Slideshow was developed to accompany the textbook \diamond Larson Geometry
\diamond By Larson, R., Boswell, L., Kanold, T. D., \& Stiff, L. $\diamond 2011$ Holt McDougal
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy

12:1 EXPLORE SOLIDS

- Polyhedron
\diamond Solid with polygonal sides \diamond Flat sides
- Face
\diamond Side
- Edge
\diamond Line segment
- Vertex
\diamond Corner

- Prism
\diamond Polyhedron with two congruent surfaces on parallel planes (the 2 ends (bases) are the same)
\diamond Named by bases (i.e. rectangular prism, triangular prism)

- Cylinder
\diamond Solid with congruent circular bases on parallel planes (not a polyhedron)

12.1 EXPLORE SOLIDS

- Pyramid \rightarrow polyhedron with all but one face intersecting in one point
- Cone \rightarrow circular base with the other surface meeting in a point (kind of like a pyramid)
- Sphere \rightarrow all the points that are a given distance from the center

Euler's Theorem

The number of faces (F), vertices (V), and edges (E) of a polyhedron are related by

$$
F+V=E+2
$$

- Convex
\diamond Any two points can be connected with a segm nnt completely inside the polyhedron
- Concave
\diamond Not convex
\diamond Has a "cave"

- Tell whether the solid is a polyhedron. If it is, name the polyhedron and find the number of faces, vertices, and edges and describe as convex or concave

Polyhedron
Square Pyramid
5 faces
5 vertices
8 edges
convex

- Tell whether the solid is a polyhedron. If it is, name the polyhedron and find the number of faces, vertices, and edges and describe as convex or concave

Polyhedron
Triangular Prism
5 faces
6 vertices
9 edges
convex
\diamond Polyhedron with congruent regular polygonal faces
- Only 5 types (Platonic solids)
\diamond Tetrahedron $\rightarrow 4$ faces (triangular pyramid)
\diamond Hexahedron $\rightarrow 6$ faces (cube)
\diamond Octahedron $\rightarrow 8$ faces (2 square pyramids put together)
\diamond Dodecahedron $\rightarrow 12$ faces (made with pentagons)
\diamond Icosahedron $\rightarrow 20$ faces (made with triangles)
- Cross Section
\diamond Imagine slicing a very thin slice of the solid
\diamond The cross section is the 2-D shape of the thin slice

12,1 EXPLORE SOLIDS

- Find the number of faces, vertices, and edges of a regular dodecahedron. Check with Euler's Theorem.
- 12 Faces
- 20 Vertices
- 30 Edges
- $F+V=E+2$
- $12+20=30+2$

- $32=32$

12:1 EXPLORE SOLIDS

- Describe the cross section.

12:1 EXPLORE SOLIDS

- Describe the cross section.

hexagon
- 798 \#2-40 even, 44-60 even $=29$

ANSWERS AND QUIZ

-12.1 Answers

- 12.1 Homework Quiz
- Surface area = sum of the areas of each surface of the solid \diamond In order to calculate surface area it is sometimes easier to draw all the surfaces

Nets

- Imagine cutting the three dimensional figure along the
 edges and folding it out.
- Start by drawing one surface, then visualize unfolding the solid.
- To find the surface area, add up the area of each of the surfaces of the net.

Parts of a right prism

- Bases \rightarrow parallel congruent surfaces (the ends)
- Lateral faces \rightarrow the other faces (they are parallelograms)
- Lateral edges \rightarrow intersections of the lateral faces (they are parallel)
- Altitude \rightarrow segment perpendicular planes containing the two bases with an endpoint on each plane
- Height \rightarrow length of the altitude

Lateral

Altitude

Edge

- Right prism
\diamond Prism where the lateral edges are altitudes
- Oblique prism
\diamond Prism that isn't a right prism

Lateral Area (L) of Prisms

- Area of the Lateral Faces
- L = Ph
$\diamond L=$ Lateral Area
$\diamond P=$ Perimeter of base
$\diamond h=$ Height
- Base Area (B)
\diamond In a prism, both bases are congruent, so you only need to find the area of one base and multiply by two

Surface Area of a Right Prism

$$
S=2 B+P h
$$

Where $\mathrm{S}=$ surface area, $\mathrm{B}=$ base area, $\mathrm{P}=$ perimeter of base, $h=$ height of prism

Draw a net for a triangular prism.

* Find the lateral area and surface area of a right rectangular prism with height 7 inches, length 3 inches, and width 4 inches.
- $P=2 \ell+2 w$
- $P=2(3)+2(4)=14$
- $L=P h=(14)(7)=98$
- $B=b h=3 \cdot 4=12$
- $A=2 B+P h$
- $A=2(12)+14(7)=122$
- Cylinders are the same as prisms except the bases are circles
\diamond Lateral Area $=\mathrm{L}=2 \pi \mathrm{rh}$
Surface Area of a Right Cylinder

$$
S=2 \pi r^{2}+2 \pi r h
$$

Where $S=$ surface area, $r=$ radius of base, $h=$ height of prism

- The surface area of a right cylinder is $100 \mathrm{~cm}^{2}$. If the height is 5 cm , find the radius of the base.
- $100=2 \pi r^{2}+2 \pi r(5)$
- $100=2 \pi r^{2}+10 \pi r$
- $0=2 \pi r^{2}+10 \pi r-100$
- $0=r^{2}+5 r-15.915$
- $r=\frac{-5 \pm \sqrt{5^{2}-4(1)(-15.915)}}{2(1)}$
- $r=\frac{-5 \pm \sqrt{88.662}}{2}$
- $r=2.2,-7.2$
- Only 2.2 makes sense because the radius must be positive
- $S=2 \pi r^{2}+2 \pi r h$

Find of the cylinder surface area.

- $S=2 \pi 2^{2}+2 \pi(2)(5)$
- $S=8 \pi+20 \pi$
- $S=28 \pi$
- 806 \#2-28 even, 31-37 all = 21

ANSWERS AND QUIZ

-12.2 Answers

- 12.2 Homework Quiz

Pyramids

- All faces except one intersect at one point called vertex
- The base is the face that does not intersect at the vertex
- Lateral faces \rightarrow faces that meet in the vertex
- Lateral edges \rightarrow edges that meet in the vertex
- Altitude \rightarrow segment that goes from the vertex and is perpendicular to the base

- Regular pyramid \rightarrow base is a regular polygon and the vertex is directly above the center of the base
\diamond In a regular pyramid, all the lateral faces are congruent isosceles triangles
\diamond The height of each lateral face is called the slant height (ℓ)
- Lateral Area $\rightarrow \mathrm{L}=1 / 2 \mathrm{Pl}$

Surface Area of a Regular Pyramid

$$
S=B+\frac{1}{2} P \ell
$$

Where $\mathrm{B}=$ base area, $\mathrm{P}=$ base perimeter, $\ell=$ slant height

CONES

Find the surface area of the regular pentagonal pyramid.

- $B=\frac{1}{2} P a$
- $B=\frac{1}{2}(5 \cdot 8)(5.5)=110$
- $\ell^{2}=5.5^{2}+4.8^{2}$
- $\ell=7.3$
- $S=B+\frac{1}{2} P l$

- $S=110+\frac{1}{2}(5 \cdot 8)(7.3)=256$

Cones

- Cones are just like pyramids except the base is a circle
- Lateral Area = π rl

Surface Area of a Right Cone

$$
S=\pi r^{2}+\pi r \ell
$$

Where $r=$ base radius, $\ell=$ slant height

The So-Good Ice Cream Company makes Cluster Cones. For packaging, they must cover each cone with paper. If the diameter of the top of each cone is 6 cm and its slant height is 15 cm , what is the area of the paper necessary to cover one cone?

- Looking for lateral area.
- $L=\pi r l$
- $L=\pi 3(15)=141.4 \mathrm{~cm}^{2}$
- 814 \#2-32 even, 35 -39 all $=21$
- Extra Credit 817 \#2, $6=+2$

ANSWERS AND QUIZ

-12.3 Answers

- 12.3 Homework Quiz
- Create a right prism using geometry cubes
- Count the lengths of the sides
- Count the number of cubes.
- Remember this to verify the formulas we are learning today.

$$
V=B h
$$

Where $\mathrm{B}=$ base area, $\mathrm{h}=$ height of prism

Volume of a Cylinder

$$
V=\pi r^{2} h
$$

Where $r=$ radius, $h=$ height of cylinder

Find the volume of the figure

- Cut into two prisms
- Top cube

$$
\begin{aligned}
& \diamond V=B h \\
& \diamond V=1(1)(1)=1
\end{aligned}
$$

- Bottom

$$
\diamond V=3(1)(2)=6
$$

- Total

$$
\diamond V=1+6=7
$$

- Find the volume.
- Base Area (front)
- Find height of triangle
- $5^{2}+h^{2}=10^{2}$
- $25+h^{2}=100$
- $h^{2}=75$
- $h=5 \sqrt{3}$

Base area=triangle - square
$\diamond B=\frac{1}{2} b h-s^{2}$
$\diamond B=\frac{1}{2}(10)(5 \sqrt{3})-3^{2}$
$\diamond B=25 \sqrt{3}-9 \approx 34.301$

- $V=B h$
- $V=(25 \sqrt{3}-9)(6) \approx 205.8$

There are 150 1-inch washers in a box. When the washers are stacked, they measure 9 inches in height. If the inside hole of each washer has a diameter of $3 / 4$ inch, find the volume of metal in one washer.

$$
\text { Base }=\text { Big circle }- \text { Sm circle }
$$

- $B=\pi r_{b i g}^{2}-\pi r_{s m}^{2}$
- $B=\pi\left(\frac{1}{2}\right)^{2}-\pi\left(\frac{3}{8}\right)^{2}$

$$
\approx 0.3436 \mathrm{in}^{2}
$$

- Find the height of 1 washer
- $h=\frac{9 \mathrm{in}}{150}=0.06 \mathrm{in}$
- $V=B h$
- $V=\left(0.3436 \mathrm{in}^{2}\right)(0.06 \mathrm{in})$

$$
=0.021 \mathrm{in}^{3}
$$

Cavalieri's Principle

If two solids have the same height and the same crosssectional area at every level, then they have the same volume.

- Find the volume.
- $B=\frac{1}{2} b h$
- $B=\frac{1}{2}(9)(5)=22.5 \mathrm{~m}^{2}$
- $V=B h$
- $V=\left(22.5 m^{2}\right)(8 m)=180 m^{3}$

822 \#2-40 even $=20$

ANSWERS AND QUIZ

-12.4 Answers

- 12.4 Homework Quiz
- How much ice cream will fill an ice cream cone?
- How could you find out without filling it with ice cream?
- What will you measure?
Volume of a Pyramid

$$
V=\frac{1}{3} B h
$$

Where $B=$ base area, $h=$ height of pyramid
Volume of a Cone

$$
V=\frac{1}{3} \pi r^{2} h
$$

Where r = radius, $h=$ height of cone

Find the volume.

- 832 \#2-30 even, 34, 36, 40, 44-52 even $=23$
- Extra Credit 836 \#2, 4 = +2

ANSWERS AND QUIZ

-12.5 Answers

- 12.5 Homework Quiz

Terms

- Sphere \rightarrow all points equidistant from center
- Radius \rightarrow segment from center to surface
- Chord \rightarrow segment that connects two points on the sphere
- Diameter \rightarrow chord contains the center of the sphere
- Tangent \rightarrow line that intersects the sphere in exactly one place

- Intersections of plane and sphere

\diamond Point \rightarrow plane tangent to sphere
\diamond Circle \rightarrow plane not tangent to sphere
\diamond Great Circle \rightarrow plane goes through center of sphere (like equator)

Shortest distance between two points on sphere
\diamond Cuts sphere into two hemispheres

Surface Area of a Sphere

$$
S=4 \pi r^{2}
$$

Where $r=$ radius

- If you cut 4 circles into 8ths you can put them together to make a sphere
Volume of a Sphere

$$
V=\frac{4}{3} \pi r^{3}
$$

Where $r=$ radius

- Find the volume of the empty space in a box containing three golf balls. The diameter of each is about 1.5 inches. The box is 4.5 inches by 1.5 inches by 1.5 inches.
- Volume of box: $4.5(1.5)(1.5)=10.125$
- Volume of each ball: $V=\frac{4}{3} \pi r^{3}$

$$
\diamond V \frac{4}{3} \pi(0.75)^{3}=1.767
$$

- Volume of empty space: Box - 3Spheres
- $10.125-3(1.767)=4.824$
- 842 \#2-36 even, 40-44 even = 21

ANSWERS AND QUIZ

-12.6 Answers

- 12.6 Homework Quiz

- Russian Matryoshka dolls nest inside each other. Each doll is the same shape, only smaller. The dolls are similar solids.

Similar Solids
\diamond Solids with same shape but not necessarily the same size
\diamond The lengths of sides are proportional
\diamond The ratios of lengths is called the scale factor

- Congruent Solids
\diamond Similar solids with scale factor of 1:1
- Following four conditions must be true \diamond Corresponding angles are congruent \diamond Corresponding edges are congruent
\diamond Areas of corresponding faces are equal
\diamond The volumes are equal

12.7 EXPLORE SIMIILAR SOLIDS

- Determine if the following pair of shapes are similar, congruent or neither.
\diamond Cone A: $r=4.3, h=12$, slant height $=14.3$
Cone B: $r=8.6, h=25$, slant height $=26.4$
\diamond Ratios: $\frac{8.6}{4.3}=2, \frac{25}{12}=2.08$. Not proportional so neither
Right Cylinder A: $r=5.5$, height $=7.3$
Right Cylinder B: $r=5.5$, height $=7.3$
$\diamond 1: 1$ ratio so congruent.

Similar Solids Theorem
If 2 solids are similar with a scale factor of $a: b$, then the areas have a ratio of $a^{2}: b^{2}$ and the volumes have a ratio of $a^{3}: b^{3}$

12.7 EXPLORE SIMILAR SOLIDS

Cube C has a surface area of 216 square units and Cube D has a surface area of 600 square units. Find the scale factor of C to D.

- Areas: $\frac{216}{600}=\frac{9}{25}=\frac{c^{2}}{d^{2}}$
- Lengths: $\frac{c}{d}=\frac{\sqrt{9}}{\sqrt{25}}=\frac{3}{5}$
- Find the edge length of C.
- Cube surface area: $S=6 c^{2}$
- $216=6 c^{2}$
- $36=c^{2}$

$$
c=6
$$

- Use the scale factor to find the volume of D.
- Volumes: $\frac{V_{C}}{V_{D}}=\frac{3^{3}}{5^{3}}$
- $\frac{6^{3}}{V_{D}}=\frac{3^{3}}{5^{3}}$
- $\frac{216}{V_{D}}=\frac{27}{125}$

$$
27 V_{D}=216(125)
$$

$$
V_{D}=1000
$$

- 850 \#2-26 even, 30-48 even $=23$
- Extra Credit 854 \#2, 4 = +2

ANSWERS AND QUIZ

-12.7 Answers

- 12.7 Homework Quiz

